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Abstract

A number of quality measures are evaluated for gray scale image compression. They are all
bivariate, exploiting the differences between corresponding pixels in the original and degraded
images. It is shown that although some numerical measures correlate well with the observers'
response for a given compression technique, they are not reliable for an evaluation across different
tecﬁﬁiqucs. The two graphical measures (histograms and Hosaka plots), however, can be used to
appropriately specify not only the amount, but also the type of degradation in reconstructed
images.

1. Introduction

The need for storing and transmitting huge volumes of data in today's computer and
communications systems necessitates data compression in many fields ranging from medicine to
acrospace. Data compression is an encoding process to reduce the storage and transmission
requirements in applications. Many efficient techniques with considerably different features have
recently been developed for both lossless and lossy compression. The evaluation of lossless
techniques is normally a simple and straightforward task, where a number of standard criteria
(compression ratio, execution time, etc.) are employed. A major problem in evaluating lossy
techniques is the extreme difficulty in describing the type and amount of degradation in
reconstructed images. Because of the inherent drawbacks associated with the subjective measures
of image quality, there has been a great deal of interest in developing a quantitative measure, either
in numerical or graphical form, that can consistently be used as a substitute. We would like to
have such a measure not only to judge the quality of images obtained by a particular algorithm, but
also for quality judgment across various algorithms. The latter task is definitely more challenging
since a wide range of image impairments is involved. An extensive survey and a classification of
the quality measures that appeared in the relevant literature are given in [1].

It is known that the mean square error (MSE), the most common objective criterion, or its variants
do not correlate well with subjective quality measures. A major emphasis in recent research has
therefore been given to a deeper analysis of the human visual system (HVS). The HVS is too
complex to fully understand with present psychophysical means, but the incorporation of even a
simplified model into objective measures reportedly leads to a better correlation with the response
of the human observers.

We attempt to evaluate the usefulness of some of the objective quality measures listed in [1]
through a set of experiments.

2. Image Quality Measures, Compression Techniques, and Test Images

The quality measures included in our evaluation are listed in Table 1. They are all discrete and
bivariate, i.e., they provide some measure of closeness between two digital images by exploiting
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the differences in the statistical distributions of pixel values. F(j, k) and f:(i, k) denote the samples
of original and degraded image fields.

Table 1. Image Quality Measures

M N
Average Difference AD=Y Y [F(j,k)-F(jk)]/MN
=1 k=1
M N M N
Structural Content ac=Y Y FGoi/ Y, Y [FGkP
j-1 k=1 j=1 k=1
M N . M N
N. Cross-Correlation NK=Y ¥ FGROEGK/Y, Y, [FGK)P
j=1 k=1 j=1 k=1
M N . M N
Correlation Quality cQ=Y ¥ FGKFGK)/Y, Y FGk)
j=1 k=1 j=1 k=1
Maximum Difference MD = Max{IF(j.k) - F(j.k)})
M N . M N
Image Fidelity F=1-Y ¥ FGo-FGOP/Y Y FGOP)
j=1 k=1 i=1 k=1
Weighted Distance WD: Every element of the difference tlnatnx 1s normalized in
some way and L1-norm is applied [1].
M-1N-1 . M-1N-1
Laplacian Mean Square Errorf LMSE = 3 )" [O{F(j,k)} - O{F( PO Y, Y [OfFGk)?
j=1 k=2 j=1 k=2
M N A
Peak Mean Square Emor | PMSE = oo Y, Y, [FG.K)} - F(i.k)I? / [Max{F(j. )}
j=1 k=1
M N . N
N. Absolute Error NAE=Y Y IO{F(,k)}-O{FGWY, Y, I0(FGKM
j=1 k=1 j=1 k=1
M N . M N
N. Mean Square Error NMSE=Y Y [O{F(j,k)}- OfF( LN 1y, Y [O{F( PO
j=1 k=1 ) j=1 k=1
M N A
Ly-norm L= Y, 2, IFG.K)-FGRPIP,p=123
j=1 k=1
Hosaka plot A graphical quality measure. The area and shape of the plot gives
information about the type and amount of degradation [1,6].
Histogram Another graphical quality measure. Gives the probability distnbution

of the pixel values in the difference image.

Note: For LMSE, O{F(j.)}=F(j+1,k)+E(j-1 k)}+F(j,k+1)+F(j.k-1)-4F(,k). For NAE, NMSE,
and Ly-norm, O{F(j,k)} is defined in three ways: (1) O{F(j.k)}=F(j k), (2) O{F(.k)}=F(.K)13,
(3) O{F(u,v) }=H{ (u2+v2)172}F(u,v) (in cosine transform domain).
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Among the few models of the HVS that have been developed, we chose the one proposed by Nill
for dealing with cosine transforms. The function for the model is defined as [2]

0.05r%3%4, for r<7
H(r)= 23
¢~ Illog10 r-log1o ™" o 57,

where r=(u2+v2)172, and u, v are the coordinates in the transform domain. The subimage structure
weighting factor Wj in the original model was not used in our computations because we wanted to
investigate the effect of H(r) alone. Since Wi is proportional to the intensity level variance of
subimage i, a separate analysis is needed to determine a suitable proportionality constant.

Table 2 Image Compression Techniques

JPEG Fourth public release of the Independent JPEG Group's JPEG software
EPIC Vision Science Group, The Media Laboratory, MIT

RLPQ Department of Computer Sciences, University of North Texas

SLPQ Department of Computer Sciences, University of North Texas

The implementations of the image compression techniques are given in Table 2. Both JPEG and
EPIC belong to the class of transform coding techniques. The former performs the discrete cosine
transform and the latter a wavelet transform. RLPQ and SLPQ contain several modifications to the
Laplacian pyramidal decomposition and use a loose wavelet basis. After quantization, they employ
arithmetic coding with a specifically tuned adaptive predictive model to compress the pyramid.

It should be noted that the choice of the compression techniques for an investigation of the
performance of quality measures (especially those that are graphical) is important since it is
desirable to include techniques which produce different types of impairments in the reconstructed
images. Our purpose is to see how well the measures are able to describe image distortions of
unsimilar nature. As we shall discuss later, the four codes in Table 2 serve this purpose.

The information about the three test images that we used can be seen in Table 3. Lenna and

Fingerprint are in the set of the National Imagery Format Test Images. The third image, hurricane
Gilbert, was obtained from the U.S. Navy. :

Table 3 Test Images

Image Source Size(bytesxbytes) Pixel Length(bits) _Spatial Frequency
Lenna NITF 512x512 8 14.07
Gilbert US Navy 512x512 8 31.25
Fingerprint NITF 512x512 8 59.37
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The spatial frequency for a given image is defined as follows [3]:

Consider an MxN image, where M = number of rows and N = number of columns.The row and
column frequencies are given by

M-1N-1
Row_Freq = \/ Y ¥ [FG.k)-FG.k-DP
j=0 k=1
and
N-1M-1
Column_Freq = prq Y Y [FG.k)-F(-1Lk)
k=0 j=1
The total frequency is then

Spatial frequency = \/ (Row_ Freq)2 + (Column_ Freq)z.

This definition of frequency in the spatial domain indicates the overall activity level in an image.

3. Performance Of Quality Measures

The gray scale image data set was obtained by coding and decoding the three test images with the
compression codes listed in Table 2. For each test image, seven different compression ratios were
selected for degradation. They range from 10:1 to 70:1 with an increment of about 10. (Our
original intention was to use the ratios 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, and 70:1, but because of
the inflexibility in using the JPEG parameter, we ended up with some different ratios.)

The photographic samples of the degraded images were first subjectively evaluated in an office
environment by ten observers who were chosen from the graduate students and faculty having
some background in image compression. They were asked to rank the images in two ways:
Within each technique and between the four techniques for a fixed compression ratio. The mean
rating of the group for an evaluation was computed by

10 10
R=(Z Sknk)/(z l'lk),

k=] k=1

where sy = the score corresponding to the kth rating, ny = the number of observers with this
rating, and 10 = the number of grades in the scale. No limits were imposed on viewing time or
distance for the observers.

Table 4 shows the correlation between the numerical objective quality measures and the subjective
evaluation. As a measure of the extent of the linear relationship, the Pearson” product-moment
correlation coefficient (r) was used. The possible values of r are between -1 and +1; the closer r is
to -1 or +1, the better the correlation is.

The coefficient values in Part (a) of Table 4 indicate that the quality measures can be put into three
groups according to their performance:

Groupl: AD, SC

Group II: NK, CQ, LMSE, MD

Group III: WD, PMSE, IF, NAE, NMSE, L.
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Table 4. (a) Correlation coefficients for each technique

(1) Lenna _

Measure/Code JPEG EPIC RLPQ SLPQ
AD 0.528 -0.154 0.864 0.984
SC 0.561 -0.117 -0.988 -0.971
NK 0.479 0.865 0.996 0.979
Q 0.480 0.865 0.996 0.979
LMSE -0.980 -0.794 -0.752 -0.803
'MD -0.964 -0.984 -0.883 -0.941
WD -0.995 -0.993 -0.954 -0.970
PMSE -0.999 -0.996 -0.991 -0.990
IF 0.999 0.996 0.991 0.990
NAE -0.997 -0.996 -0.970 -0.973
NAE(1/3) -0.996 -0.996 -0.969 -0.972
NAE(HVS) -0.972 -0.977 -0.925 -0.940
NMSE -0.999 -0.996 -0.991 -0.990
NMSE(1/3) -0.999 -0.997 -0.989 -0.989
NMSE(HVS) -1.000 -0.998 -0.995 -0.996
LI -0.997 -0.996 -0.970 -0.973
12 -0.994 -0.993 -0.966 -0.969
12173 -0.995 -0.993 -0.965 -0.968
LigHV '3) -0.988 -0.990 -0.969 -0.975
L3 -0.991 -0.991 -0.961 -0.964
(2) Gilbert

Measure/Code JPEG EPIC RLPQ SLPQ
AD 0.747 -0.527 0.820 0.969
SC -0.243 -0.936 -0.987 -0.930
NK 0.768 0.981 0.984 0.936
CQ 0.768 0.981 0.984 0.936
 LMSE -0.869 -0.800 -0.809 -0.727
| MD -0.828 -0.929 -0.853 -0.687
WD -0.960 -0.960 -0.958 -0.923
PMSE -0.979 -0.986 -0.981 -0.943
IF 0.979 0.986 0.981 0.943
NAE -0.967 -0.975 -0.975 -0.939
NAE(1/3) -0.842 -0.987 -0.974 -0.945
NAE(HVS) -0.941 -0.941 -0.961 -0.914
NMSE -0.979 -0.986 -0.981 -0.943
NMSE(1/3) -0.717 -0.992 -0.978 -0.958
NMSE(HVS) -0.988 -0.989 -0.998 -0.967
L1 -0.967 -0.975 -0.975 -0.939
T2 -0.961 -0.965 -0.962 -0.917
L2(1/3) -0.754 -0.985 -0.959 -0.934
L2(HVS) -0.964 -0.968 -0.985 -0.941
L3 -0.948 -0.960 -0.946 -0.890
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3) Fingerprint

easure/Code JPEG EPIC RLPQ SLPQ
AD 0.803 -0.101 0.926 0.830
SC 0.325 -0.846 -0.955 -0.935
NK 0.895 0.975 0.958 0.944
Q 0.895 0.975 0.958 0.944
SE -0.906 -0.962 -0.737 -0.812
MD -0.417 -0.956 -0.540 -0.402
WD -0.962 -0.992 -0.938 -0.934
"PMSE -0.989 -0.999 -0.962 -0.953
1k 0.989 0.999 0.962 0.953
AE -0.975 -0.994 -0.956 -0.946
AE(1/3) -0.974 -0.993 -0.954 -0.939
NAE(HVS) -0.948 -0.987 -0.936 -0.923
NMSE -0.989 -0.999 -0.962 -0.953
SE(1/3) -0.988 -0.995 -0.959 -0.934
SE(HVS) -OQQI -0.996 -0.966 -0.954
1 -0.975 -0.994 -0.956 -0.946
2 -0.975 -0.995 -0.947 -0.937
2(1/3) -0.974 -0.993 -0.943 -0.920
2(HVS) -0.968 -0.997 -0.946 -0.930
L3 -0.975 -0.996 -0.934 -0.925
Table 4. (b) Correlation coefficients across techniques
(1) Lenna
easure/Ratio [ 69:1 59:1 52:1 42:1 30:1 20:1 10:1
AD -0.470 ]-0.498 -0.051 -0.558 0.875 0.260 -0.656
SC 0.863 0.716 0.863 0.626 0.683 -0.780 0.364
NK -0.834 -0.705 -0.834 -0.675 -0.582 0.858 -0.455
Q -0.834 -0.705 -0.834 -0.675 -0.582 0.858 -0.455
SE 0.231 0.163 -0.010 0.203 -0.720 -0.471 0.950
'MD 0.033 0.564 0.332 0.541 -0.380 -0.958 0.681
WD -0.914 -0.221 -0.097 0.519 -0.254 -0.792 0.941
PMSE 0.138 0.533 0.360 0.671 -0.085 -0.893 0.929
IF -0.161 -0.520 [-0.349 -0.666 0.087 0.892 -0.928
NAE -0.805 ]-0.295 -0.133 0.534 1-0.015 -0.862 0915
NAE(1/3) -0.790 -0.417 -0.302 0.434 -0.017 -0.858 0915
AEHYVS) 0.454 0.527 0.270 0.531 -0.272 -0.828 0.874
NMSE 0.161 0.520 0.349 0.666 -0.087 -0.892 0.928
SE(1/3 -0.627 -0.342 -0.349 0.384 -0.119 -0.879 0.928
NMS S) 0.589 0.664 0.397 0.629 1-0.202 -0.879 0.909
L1 -0.805 -0.295 -0.133 0.534 -0.015 -0.862 0.915
T2 0.164 0.503 0.332 0.651 -0.086 -0.884 0.932
L2(1/3) -0.607 -0.313 -0.326 0.370 -0.123 -0.867 0.934
%HVS) 0.553 0.632 0.373 0.604 -0.187 -0.364 0.894
0.461 0.627 0.401 0.670 -0.139 -0.893 0.938




2) Gilbert

Measure/Ratio [ 69: 1 50:1 §2:1 42:1 30:1 20:1 10:1
AD -0.015 0.968 0.664 0.913 0.835 0.89§ 0.661
SC -0. 8§3 0.466 -0.494 -0.641 -0.552 -0.697 -0.739
NK 0.871 -0.654 0.617 0.728 0.636 0.760 0.741
Q 0.871 -0.654 0.617 0.728 0.636 0.760 0.741
LMSE 0.532 -0.600 0.171 -0.112  ]-0.403 0.125 0.673
MD -0.762 0.881 -0.935 -0.891 -0.761 -0.255 0.458
WD -0.048 0.871 0.132 -0.365 -0.480 -0.639 -0.616
"PMSE -0.517 0.953 -0.700 -0.688 -0.788 -0.866 -0.753
IF 0.517 -0.953 0.700 0.688 0.788 0.866 0.753
NAE -0.140 0.947 -0.011 -0.318 -0. 3_7_4 -0.628 -0.759
NAE(1/3) 0.772 0.990 0.952 0.087 0.977 -0.174 -0.007
NAEHYVS) -0.941 -0.961 -0.962 -0.896 -0.§34 -0.854 -0.835
NMSE -0.517 0.953 -0.700 -0.688 -0.788 -0.866 -0.7§§
NMSE(1/3) 0.560 0.993 0.961 0.118 0.982 -0.076 0.071
NMSE(HVS) -0.967 -0.952 -0.973 -0.908 -0.843 -0.885 -0.895
L1 -0.140 0.947 -0.011 -0.318 -0.373 -0.628 -0.759
T2 -0.539 0.954 -0.712 -0.693 -0.786 -0.368 -0.754
T2(173) 0.584 0.999 0.935 0.084 0.974 -0.110 0.057
n(HVS) -0.965 -0.950 -0.967 [-0.896 -0.832 |-0.878 -0.881
L3 -0.787 0.984 -0.91% -0.904 -0.941 -0.893 -0.391
(3) Fingerprint
Measure/Ratio | 69:1 59:1 §2:1 42:1 30:1 20:1 10:1
AD -0.871 0.878 -0.930 0.135 0.345 -0.093 -0.65§
SC -0.95»6 -0.925 -0.975 -0.9§0 -0.903 -0.953 -0.887
NK 0.979 0.930 0.982 0.92 | 0.924 0.966 0.920
cQ 0.979 0.930 0.982 0.971 0.924 0.966 0.920
TMSE 0.804 _[-0.437 _[-0.592_ | 0208 | 0014 [ 0.000 [ 0232
MD 0.735 0.977 0.999 0.309 0.573 -0.412 0.574
WD 0.057 -0.126 -0.976 -0.881 -0.918 -0.993 -0.930
PMSE -0.185 0.916 -0.920 -0.983 |-0.981 -0.989 -0.966
IF 0.185 -0.916 0.920 0.983 0.981 0.989 0.966
NAE -0.304 1.000 -0.970 -0.999 -0.992 -0.989 -0.964
NAE(1/3) -0.553 -0.024 -0.913 -0.994 -0.982 -0.980 -0.974
NAE(HVS) -0.888 -0.404 -0.959 -0.977 -0.986 -0.946 -0.866
NMSE -0.185 0.916 -0.920 -0.983 -0.981 -0.989 -0.966
NMSE(1/3) -0.826 -0.791 -0.923 -0.986 -0.9§9 -0.976 -0.968
NMSE(HVS) -0.894 -0.442 -0.986 ]-0.983 -0.979 -0.961 -0.902
L1 -0.304 1.000 -0.970 -0.999 -0.992 -0.989 -0.964
T2 -0.192 0914 [-0.921 [-0.984 |-0.983 |-0.990 [-0.964
L2(1/3) -(.830 -0.792 -0.926 -0.987 -0.972 -0.974 -0.967
L2(HVS) -0.896 -0.440 -0.988 -0.985 -0.983 -0.962 -0.892
L3 -0.195 0.862 -0.544 -0.960 -0.960 -0.988 -0.974

The measures in Group I cannot be reliably used with all techniques as the sign of the correlation
coefficient does not remain the same. Group II measures are consistent, but nevertheless have
poor correlation with the observers' response for some of the techniques. Among the useful
measures in Group III, NMSE(HVS) is the best one for all the test images. Except for a single
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case, the incorporation of the HVS into NMSE makes the correlation slightly stronger. For the
other two measures NAE and L2, however, there is no such improvement. (In fact, the visual
model has an adverse effect on NAE.) The results reported in [4] and [5] support our conclusion
that the HVS model does not always improve the correlation, and when it does, the gain is small.
The nonlinear filter ()3, on the other hand, seems to have a random behavior, but usually leads to
a weaker correlation. As IF is defined in terms of NMSE, the results for these two measures are
identical. It has been found that PMSE establishes the same relationship as well.

Part (b) of Table 4 is rather disappointing, and the information that can be extracted is limited. As
the compression ratio is increased, the measures perform much poorer. This observation is not
surprising because different techniques introduce different types of degradation into the
reconstructed images. Since the metrics combine all the pixel differences between two given
images into a single number, one cannot expect to know much about the annoyance experienced by
the human observer. In our experiments, for instance, although JPEG was the code for which the
etrors were always the smallest, the observers found the tile effect very objectionable in Lenna, yet
favored blockiness in the higher frequency images Gilbert and Fingerprint.

To the best of our knowledge, histograms and Hosaka plots are the only two image quality
measures that are graphical. Before we evaluate their performance, a specification of the type of
impairment caused by the techniques is needed. Because of space limitation, the results for only
the first test image will be discussed here. Four degraded versions of Lenna for the highest
compression ratio (69:1) are given in Figure 1. The original image is also included for a
comparison. The major types of degradation in the images are blockiness with JPEG, blurriness
with EPIC, both fuzziness and blockiness with RLPQ, and fuzziness with SLPQ (The term
fuzziness is used in the sense of equal amount of blurriness over the entire image).

A histogram of the compression error is constructed by plotting the number of times a specific
value occurs in the difference image versus the value itself. Typically, it looks like a Gaussian
curve; the more it resembles a spike at x=0, the greater the fidelity of the reconstructed image. The
seven histograms in Figure 2 were obtained using JPEG. They clearly depict the increase in the
amount of blockiness as the compression ratio goes up. The concentration of low intensity pixels
for the lowest ratio is gradually reduced and the distribution becomes more uniform. Our
experience has shown that histograms may also be used to specify different types of degradation in
images. In Figure 3, the histograms with low intensity pixel concentrations are associated with
RLPQ and SLPQ, and they are in contrast with those corresponding to JPEG and EPIC. The
uniform fuzziness over the entire image, it is understood, leads to a spiky histogram.
Nevertheless, the similarity between the histograms in each pair makes it difficult to distinguish
between the artifacts involved.

To construct a Hosaka plot, or an h-plot, we measure a number of features of the reconstructed
image and compare these with the corresponding features in the original image [6]. The difference
between the two feature vectors generates a vector error measure, which, unlike scalar quantities,
allows for a description of not only the amount, but also the type of degradation. In the process,
the original image is first segmented into blocks whose variance is less than some specified
threshold. These blocks are then grouped together to form a number of classes which depend on
the size of the blocks. Two features are computed for each class in both the original and the
reconstructed images. One of them is related to the mean intensity values and the other is the mean
standard deviation. The h-plot is constructed by plotting the errors in the corresponding features in
polar coordinates. The radius denotes the feature error, the left and right half planes contain the
vectors associated with standard deviations and means, respectively.

It is reported in [6] that when noise is added to an image, the area of the h-plot is proportional to
the image quality, but the structure of the diagram depends on the type of distortion. If an image is
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JPEG EPIC

RLPQ SLPQ

Figure 1
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blurred, on the other hand, the pattern on the right side of the diagram remains fixed and increases
in magnitude as the blurring increases while the left side is much less predictable.

The h-plots in Figure 4 were obtained using Lenna for all compression techniques and ratios. In
each diagram, the length of a radius is 2.75 units. The blockiness is reflected on the right side of
h-plots, whereas, the effect of blurriness can be traced on the left, By a simple comparison, we are
able to see the way each code reduces the fidelity of the image. One can even learn how the
distortion is distributed in the reconstructed images by looking at the relative lengths of the
components along the axes. For example, it is evident that JPEG preserves the high frequency
components (the feathers) of the image, whereas RLPQ induces uniform blockiness. Such
information is extremely helpful considering the sensitivity of the human observer to the location of
the image error. For the construction of the h-plots in Figure 4, the two parameters, the initial
block size N and the variance threshold T, were chosen as 16 and 10, respectively, as in Hosaka's
or Farrelle's work [6]. For high compression ratios, the h-plots for JPEG and RLPQ indicate that
it may be worth trying larger values for these parameters.

4. Conclusions

The results of an evaluation concerning the usefulness of a number of objective quality measures
for grayscale image compression have been presented. It is understood that although a group of
numerical measures can reliably be used to specify the magnitude of degradation in reconstructed
images for a given compression technique, an evaluation across different techniques is not
possible. This is because a single scalar value cannot be used to describe a variety of impairments.
A simple analogy would be the futility in comparing apples with oranges. The two graphical
measures, however, are fairly successful in specifying the type of degradation. Hosaka plots, in
particular, provide a good indication of how images are degraded. A combination of numerical and
graphical measures may prove more useful in judging image quality. There is also a need for the
development of new graphical measures with superior judgment capabilities. Further research in
these areas is now ongoing.
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